Microstructure and mechanical characteristics of dissimilar aluminium alloy joining employing gas tungsten arc welding

Authors

  • Ghalandari, L. Department of Materials Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
  • Khosravifad, A. Department of Materials Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
  • Rabiezadeh, A. Department of Materials Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
  • Taheri Moghaddam, N. Department of Materials Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
Abstract:

Despite the increased use of aluminium alloys in several industries, their common concern is the difficulty of joining dissimilar alloys using welding techniques. Based on this, the primary purpose of this research is to assess the mechanical characteristics of dissimilar joining of heat-treatable 6061 and non-heat-treatable 5083 aluminium alloys by gas tungsten arc welding and to discover the link between microstructure and mechanical properties. Similar welds were also implemented and evaluated in order to more properly analyze and compare the outcomes. The quality of the weld generated after establishing the health of the joint using non-destructive testing was evaluated by destructive bending, tensile, metallographic, and hardness tests to check the mechanical and microstructural qualities. The intended dissimilar weld was produced under the parameters of pulse current 120-80 amps, voltage 20 volts, welding speed 15 cm/min, and filler 5356. It should be highlighted that the dissimilar weld had the maximum joint efficiency, and with perfect control of welding settings and the absence of flaws, only 36% loss of strength was recorded when compared to the base metal. Metallographic images revealed that the formation of hot cracks in the dendritic structure of the weld metal is the major cause of strength loss for 5083 similar weld and the production of numerous porosities in the weld metal for 6061 similar welds.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Gas tungsten arc welding

Gas tungsten arc welding (GTAW), also known as tungsten inert gas (TIG) welding, is an arc welding process that uses a nonconsumable tungsten electrode to produce the weld. The weld area is protected from atmospheric contamination by a shielding gas (usually an inert gas such as argon), and a filler metal is normally used, though some welds, known as autogenous welds, do not require it. A const...

full text

Optimization of Process Parameters for Gas Tungsten Arc Welding of AA1100 Aluminium Alloy

This paper aims at optimization of process parameters for gas tungsten arc welding (GTAW) of sheet samples of Aluminium alloy AA1100 using AC wave with Argon as inert gas. Tensile properties of parent and welded specimens were determined as per ASTM-E8M standard. Taguchi approach was applied to determine most influential control parameters which will yield better tensile strength of the joints ...

full text

Rapid prototyping based on variable polarity gas tungsten arc welding for a 5356 aluminium alloy

This paper presents a new deposition process for directly building cylindrical parts of the 5356 aluminium alloy with variable polarity gas tungsten arc welding (VPGTAW). The relationship between the geometric sizes of the deposited layer and the welding parameters is investigated. A machine vision sensor is used to monitor and control the arc length that is a key welding parameter in the achie...

full text

Optimization of the Pulsed Gas Tungsten Arc Welding in Dissimilar Joining Austenitic Stainless Steel AISI 316L to Nickel-Base Super Alloy of Monel 400

In this research, optimization of the pulsed gas tungsten arc welding including pulse current, background current, pulse frequency and on time were investigated in welding of non-similar materials of austenitic stainless steel AISI 316L and nickel-base super alloy of Monel 400 by using ERNiCr3 filler metal. In order to obtain optimum conditions of welding the Taguchi method with the L9 array wa...

full text

Evaluation of the Melted Zone Microstructure in the Interface of the Dissimilar Weld between A335 Low Alloy Steel and ER309L Filler Metal by Gas Tungsten Arc Welding

In the present study, the microstructure and mechanical properties of the dissimilar welding between ASTM A335 low alloy steel and ER309L austenitic stainless steel were investigated using the gas tungsten arc welding process. The welding of dissimilar materials between ASTM A335 low alloy steel and ER309L austenitic stainless steel was found to have a significant effect on the microstructure w...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 2

pages  23- 35

publication date 2023-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023